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ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons.
Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive,
the development of stem cell-based therapies for the treatment of ALS has gained widespread
support. Here, we review the types of stem cells being considered for therapeutic applications
in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical
translation. We also discuss early trials from around the world translating cellular therapies to
ALS patients, and offer important considerations for future clinical trial design. Although clinical
translation is still in its infancy, and additional insight into the mechanisms underlying therapeu-
tic efficacy and the establishment of long-term safety are required, these studies represent an
important first step toward the development of effective cellular therapies for the treatment of
ALS. STEM CELLS 2014;32:1099–1109

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a lethal
adult-onset neurodegenerative disorder charac-
terized by the loss of both upper and lower
motor neurons. Sporadic and familial forms
are clinically and pathologically indistinguish-
able, with symptoms including muscle weak-
ness and atrophy that present in either bulbar
muscles and/or in the limbs. In almost all
cases, death occurs within 3–5 years of diag-
nosis when progressive motor neuron degen-
eration affects the diaphragm and leads to
respiratory failure. Riluzole, the only FDA-
approved treatment for ALS, extends survival
for merely a few months [1], highlighting the
need for more effective therapies.

The development of targeted therapies for
ALS, however, has been hindered by the fact
that the mechanisms responsible for disease
onset and progression largely remain unknown.
Only 10%–15% of cases of ALS are familial, while
the remaining 85%–90% of cases are classified
as sporadic. Several genetic mutations are asso-
ciated with familial ALS, including mutations in
Cu21/Zn21 superoxide dismutase (SOD1) and
TAR DNA binding protein-43 [2–5]. Most
recently, hexanucleotide repeat expansions in
the 50 noncoding region of the C9orf72 gene
have been identified as the most common cause
of familial ALS [6]. Among the many proposed

mechanisms for the more common sporadic
form of ALS [4, 7, 8], oxidative stress and
glutamate toxicity induce a toxic cellular and
spinal cord milieu, respectively, while neurofila-
ment aggregation and axonal transport
defects may be associated with altered mito-
chondrial trafficking and impaired retrograde
transport of peripherally derived neurotrophic
factors [4, 8–10]. Recent evidence has also
linked protein aggregation and impaired RNA
processing to ALS pathogenesis [11, 12]. Further-
more, altered peripheral immunological
responses and neuroinflammation are emerging
as important effectors of the ALS disease course
[13, 14]. Non-neuronal cells such as microglia,
astrocytes, and oligodendrocytes also contribute
to ALS pathogenesis, via alterations to the spinal
cord microenvironment, increased glutamate
excitotoxicity, and/or impaired neuronal meta-
bolic support [2, 15–17]. In fact, oligodendrocyte
dysfunction is evident early in the disease course
before symptom onset [18]. Similarly, denerva-
tion at neuromuscular junctions and axonal
defects precede symptom onset and motor
neuron loss, and studies have shown that con-
nectivity along the entire motor axis, from
the corticospinal tract to motor neurons and
neuromuscular junctions, is compromised in ALS
[19–21]. Therefore, treatments that influence
multiple pathogenic mechanisms in ALS and that
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provide motor neuron support as well as maintain neuronal cir-

cuitry are likely required to have the most significant impact on

the disease course.
Because of the multifaceted nature of ALS, the emerging

concept of stem cell-based therapeutics for ALS treatment has
garnered increasing support [22–24]. In this review, we dis-
cuss the types of stem cells being considered for therapeutic
applications in ALS, highlighting preclinical data supporting
the rationale behind the potential efficacy of each cell class
and treatment approach. We also discuss some of the early
translational studies providing stem cell-based therapies to
ALS patients around the world. Although clinical translation is
still in its infancy and additional insights into the mechanisms
underlying efficacy and the establishment of long-term safety
are required, these studies represent an important first step
toward the development of cellular therapies for the treat-
ment of ALS.

PRECLINICAL ADVANCES IN STEM CELL THERAPIES FOR ALS

Preclinical in vitro and in vivo studies have provided tremen-
dous insight into which types of stem cells are likely to offer
therapeutic benefits in ALS [22, 23]. These lines vary in their
derivation source, differentiation potential, and availability;
features that all contribute to the advantages and limitations
of each population. Understanding how stem cells may confer
benefit is also of utmost importance, as transplanted cells can
offer cell replacement, provide support through paracrine
effects and growth factor production, or alter the immune
response and inflammation through cytokine production. Fur-
thermore, treatments aimed at activating endogenous stem
cell niches provide a therapeutic option to enhance natural
neuroprotective mechanisms. Thus, determining the desired
outcomes of stem cell-based therapies is critical for continued
therapeutic development. Finally, therapeutic delivery
approaches vary and selection of the optimal strategy to
achieve the desired effects on ALS pathogenesis warrants
important consideration.

Embryonic Stem Cells

Embryonic stem cells (ESCs) have the ability to differentiate
into all germ layers, and serve as a resource for both cellular
replacement in ALS and for disease modeling when differenti-
ated into motor neurons. Early studies examining intraspinal
transplantation of ESC-derived motor neurons into G93A-
SOD1 rats demonstrated transient functional improvements;
however, there was no apparent axonal projections to the
periphery, no effect on neuromuscular junction formation, no
long-term effects on the lifespan of the rats, and limited graft
survival [25]. Considering the fact that transplanted cells must
project axons over long distances in the context of a toxic spi-
nal cord, these results are not surprising and support the con-
tention that direct motor neuron replacement is unlikely to
affect the disease course in ALS [25]. Furthermore, their lim-
ited supply as well as the fact that human ESCs are subject to
strict regulatory policies has hampered continued ESC-based
therapeutic advances for ALS; however, the utilization of ESCs
for high-throughput drug screening continues, and prospects
for future drug development efforts have already been identi-
fied using such strategies [26].

Mesenchymal Stem Cells

The therapeutic development of many other stem cell types
for clinical application in ALS, conversely, is gaining momen-
tum. Umbilical cord stem cells (UBCs) are harvested from
umbilical cord blood and provide a source of mesenchymal
stem cells (MSCs) capable of differentiating into mesenchymal
and potentially even neuronal lineages [27]. In both G93A-
SOD1 and wobbler mice, intracerebroventricular injection of
UBCs attenuated progression, and the treatment improved
survival by approximately 10% in G93A-SOD1 mice; however,
grafted cells were identified within the ventricles and not the
spinal cord, suggesting that the observed effects were medi-
ated by production and release of neuroprotective factors,
including anti-inflammatory cytokines and chemokines [28].
Similarly, retro-orbital injection of genetically engineered UBCs
expressing increased levels of vascular endothelial growth fac-
tor (VEGF) and fibroblast growth factor in G93A-SOD1 mice
prompted differentiation to astrocytic lineages that produce
protective growth factors to improve the motor neuron
microenvironment [29]. Retro-orbital delivery of UBCs
improved neuromuscular transmission [30], and intravenous
UBC administration delayed disease progression by 15%,
induced anti-inflammatory effects, reduced microglial activa-
tion, and increased survival up to 20%–25% in G93A-SOD1
mice [31, 32]. Intraspinal transplantation of UBCs at an early
stage in the disease course improved motor function, attenu-
ated motor neuron loss, reduced astrogliosis, and improved
survival by up to 12 days in female G93A-SOD1 mice [33], fur-
ther supporting the potential of UBC-based therapies in ALS.

Multiple approaches using bone marrow-derived MSCs are
also being developed for clinical translation based on the rela-
tive accessibility and abundance of MSCs compared to other
stem cell classes and their potential for autologous cellular
therapy development. Recent reports of MSC cross-lineage
differentiation to produce myoblasts and neurons are intrigu-
ing, but must be interpreted with caution as this is a rela-
tively new finding and further study is required [24, 34–36].
Intravenous, intrathecal, intracerebral, and intraspinal delivery
of autologous MSCs in G93A-SOD1 mice confer a range of
beneficial effects on the disease course, including improved
motor function, attenuated motor neuron loss, and prolonged
survival [22, 23]. G93A-SOD1 mice receiving intraspinal MSC
transplants exhibit favorable effects on neuroinflammation,
astrogliosis, and microgial activation [37]. Furthermore, induc-
tion of neural differentiation of MSCs via neurogenin 1
expression enhances MSC homing to the CNS following intra-
venous administration in ALS mice and is associated with
delayed disease onset and improved motor function [38].

An alternative strategy, however, given that MSCs do not
naturally differentiate into neural lineages, is the use of MSCs
as a vehicle to deliver neuroprotective factors to the CNS.
Intracerebroventricular injection of G93A-SOD1 mice with
MSCs expressing glucagon-like peptide 1, a peptide with anti-
oxidant properties, confers significant effects on the disease
course, including a 15-day delayed onset, a 13-day improve-
ment in survival, and attenuated neuroinflammation, astrocy-
tosis, and microglial activation [39]. Intramuscular injection of
MSCs expressing increased levels of glial-derived neurotrophic
factor (GDNF) improved motor neuron health and extended
survival by 28 days in G93A-SOD1 rats [40]. The caveat,
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however, with MSCs or any autologous cellular therapy, is
that cells harvested from diseased individuals for therapeutic
purposes (in this case with ALS) are inherently predisposed to
the disease process. This could clearly impact the therapeutic
utility of autologous cells. While some studies characterizing
the in vitro properties of MSCs from both ALS patients and
healthy controls demonstrate that there are no distinct differ-
ences in cellular properties or neuronal differentiation [34,
41], other studies have indicated that ALS patient MSCs
exhibit reduced neurotrophic factor secretion and decreased
migration [42], and the degree of these deficits correlates
with poorer prognosis in ALS patients [43]. Impaired neuro-
protective capacity has been observed in MSCs from adult
G93A-SOD1 rats [44], and the stability and cellular properties,
including neurotrophic profile and anti-inflammatory potential,
of MSCs from ALS patients also differ between passages in
vitro [45]. Together, these studies suggest that MSCs from
healthy donors or utilization of optimally passaged MSCs may
confer improved efficacy for cellular therapy development
over the use of autologous MSCs from an ALS patient.

Progenitor Cells

Neural progenitor cells (NPCs) are emerging as a promising
cellular therapy for clinical translation in ALS. In ALS models,
motor neuron degeneration triggers endogenous NPC niches
in the CNS to proliferate, migrate, and promote neurogenesis
in the spinal cord as a natural response to disease [46, 47];
however, the limited number of endogenous NPCs is likely
insufficient to combat the toxic, progressive degeneration
associated with ALS. Thus, NPC cell lines with robust growth
properties and neurogenic potential have been developed
[48, 49] and transplantation of NPCs has been extensively
studied as an attempt to augment this natural defense mech-
anism. NPCs have been delivered via intravenous, intrathecal,
and most commonly via intraspinal methods to both
G93A-SOD1 mouse and rat models, and the effects on the
disease course and cell fate have been extensively character-
ized [22, 23]. Intraspinal grafting of human NPCs in ALS rats
conferred improvements in survival of more than 10 days and
protective effects on motor neuron number and motor func-
tion that are attributed to the observed ability of transplanted
NPCs to integrate into the spinal cord, differentiate, and form
functional synapses with host motor neurons [50–52]. Recent
observations in G93A-SOD1 rats receiving intraspinal NPC
injections, however, revealed that although transient effects
on motor neuron number and function were observed in the
vicinity of the cellular grafts, electrical recordings of motor-
evoked potentials reflected impaired transmission along the
descending motor tract and limited effects on survival were
present, suggesting that attenuating neuronal loss along the
entire corticospinal tract is necessary to achieve meaningful
effects on disease progression [21]. This is further supported
by studies in G93A-SOD1 rats demonstrating that targeting
intraspinal NPC transplants to multiple regions of the spinal
cord significantly prolongs survival by 17 days [53]. As in MSC
studies, the development of enhanced NPC lines expressing
increased levels of growth factors such as GDNF and VEGF
also confers improvements in motor neuron number and
motor function following transplantation [54, 55], suggesting
that combination therapies may warrant consideration in the
future. Recent insight into potential crosstalk between trans-

planted NPCs and endogenous progenitor cell niches in the
spinal cord supports the possibility that cellular therapy
approaches can induce protection by activating endogenous
neuronal repair mechanisms as well [56]. Thus, NPC transplan-
tation has the ability to support motor neurons, provide neu-
rotrophic support, enhance endogenous neurorepair
mechanisms, and ultimately maintain neurocircuitry and pro-
vide meaningful effects on the ALS disease course.

Finally, the multifaceted mechanisms and variety of cell
types proposed to contribute to ALS pathogenesis support
cellular therapy development using non-neuronal progenitors.
Intracerebroventricular injection of skeletal muscle stem cells
induces anti-inflammatory cytokine production, improved
motor function, and protection of neuromuscular junctions in
wobbler mice [57]. Intraspinal transplantation of glial-
restricted progenitor cells into the cervical spinal cord of
G93A-SOD1 rats, as a means to increase astrocyte numbers in
spinal cord regions controlling critical respiratory function,
attenuates motor neuron loss, slows respiratory functional
declines, and improves survival by approximately 17 days [58].
Olfactory ensheathing stem cells (OESCs), a type of glial cell
that assists in axonal regeneration and is currently in use for
spinal cord injury, have also demonstrated positive effects on
ALS progression in preclinical studies, including evidence of
myelination, increased motor neuron numbers, and more
than a 6-day increase in survival following intraspinal trans-
plantation in G93A-SOD1 rats [59]. Analysis of oligodendro-
cytes in ALS patients and G93A-SOD1 mice revealed defects in
the maturation and function of newly proliferating progenitors
following degeneration of resident oligodendrocytes during
the disease course, suggesting that cellular therapies that
restore oligodendrocyte function may be beneficial in ALS [18,
60]. In support of this contention, deletion of G93A-SOD1 in
oligodendrocytes of ALS mice delayed disease onset and
improved survival [18].

Taken together, these and other studies (detailed further
in [22, 23, 61]) demonstrate that multiple classes of stem cells
have the potential to impact ALS pathogenesis in preclinical
settings by improving the motor neuron environment, replac-
ing lost neuronal and non-neuronal cells within the spinal
cord, supporting neuromuscular junctions, and/or modulating
the immune response (Fig. 1). Additional discernment of how
each stem cell type contributes to these effects and how to
most effectively target stem cells to achieve these effects will
be incredibly important for selecting the appropriate cell type
and designing therapeutic delivery approaches for future clini-
cal translation.

TRANSLATING STEM CELL THERAPIES TO ALS PATIENTS

Although the age of stem cell-based therapeutics is just
beginning, a handful of cellular therapy trials for ALS have
been completed in different countries around the world.
These recent trials are summarized in Table 1 and include
vast differences in the number of patients, cell type, delivery
method, and outcome measurement strategies; however, each
study has the potential to contribute to our current under-
standing of the safety and feasibility of stem cell therapies for
ALS, as these variables provide important considerations for
future trial design and clinical application.
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Clinical Application of OESCs

OESC transplantation for ALS has commenced in People’s
Republic of China based on positive effects, including axonal
regeneration, remyelination, and functional improvements, in
spinal cord injury studies [81]. In a small controlled study
involving 35 ALS patients, 15 of which received OESC trans-
plants and 20 untreated controls, individuals receiving intra-
cranial OESC transplants showed decreased progression, as
measured by the ALS functional rating scale (ALSFRS), over
the 4-month follow-up period [62]. Based on these and other
short-term results from this group [82], over 500 ALS patients
have since received OESC transplants in People’s Republic of
China, with the majority of individuals receiving a single intra-
cranial OESC injection, and 42 patients receiving two to five
rounds of OESC injections [63]. Evaluation of the 42 patients
receiving multiple rounds of OESCs revealed improvements in
ALSFRS and ALS Norris Scale scores as well as improvements

in neurological and pulmonary function after repeated inter-
vention [63]. Independent follow-up case reports on individu-
als receiving OESC transplants in People’s Republic of China,
however, do not support the clinical translation of this OESC
therapy. Evaluation of seven patients for 1 year revealed no
significant objective improvements and two patients experi-
enced serious side effects [83], and similarly, no benefit was
seen in an elderly woman who experienced accelerated dis-
ease progression and severe side effects following OESC ther-
apy [84]. Furthermore, post-mortem characterization of the
cellular grafts in two Italian patients treated in People’s
Republic of China exhibited evidence of graft encasement, the
presence of undifferentiated cells, and no evidence of neuro-
trophism or regeneration [85]. Thus, while the large Chinese
study reports that OESCs may offer benefit in ALS, other
reports criticize the observed outcomes and do not support
the clinical translation of this therapeutic approach at this
time. Furthermore, these findings strongly emphasize the

Figure 1. Potential mechanisms of stem cell efficacy in amyotrophic lateral sclerosis. In addition to motor neurons, multiple cell types
within the motor neuron microenvironment play a role in disease pathogenesis; therefore, the delivery of stem cell-based therapies
(blue) has the potential to provide support through many different mechanisms. Within the spinal cord, stem cells that differentiate
into neurons (green) can synapse with existing motor neurons to re-establish or maintain neurocircuitry (A) as well as provide neurotro-
phic support (B). Differentiation of stem cells into non-neuronal cell types (yellow) within the spinal cord microenvironment can also
impact disease progression by providing neurotrophic support (B), and attenuating oligodendrocyte dysfunction and mitigating toxicity
(C). In the periphery, stem cell transplantation into muscle can provide critical support to maintain functional neuromuscular junctions
(D). Finally, the mobilization of endogenous MSCs from the bone marrow into the circulation can also induce immunomodulatory effects
that attenuate inflammatory responses within the spinal cord via the production of cytokines and other anti-inflammatory mediators
(E). Abbreviation: MSC, mesenchymal stem cell.

1102 Stem Cell Therapies for ALS

VC AlphaMed Press 2014 STEM CELLS



Ta
b
le

1.
C
lin
ic
al

ap
p
lic
at
io
n
s
o
f
st
em

ce
ll
th
er
ap
ie
s
in

A
LS
.

St
em

ce
ll
ty
p
e

D
el
iv
er
y

m
et
h
o
d

C
o
u
n
tr
y

P
at
ie
n
ts

n
o
.

D
es
ir
ed

o
u
tc
o
m
es

C
o
n
cl
u
si
o
n
s

A
d
d
it
io
n
al

d
et
ai
ls

R
ef
er
en

ce
(s
)

O
ES
C

In
tr
ac
ra
n
ia
l

Pe
o
p
le
’s
R
ep

u
b
lic

o
f
C
h
in
a

15
O
ES
C

Ef
fi
ca
cy

B
en

efi
ci
al

ef
fe
ct
s
o
n
d
is
ea
se

p
ro
gr
es
si
o
n

Fo
llo
w
-u
p
fo
r
4
m
o
n
th
s;
se
ve
n

p
at
ie
n
ts

re
ce
iv
in
g
O
ES
C
s

sh
o
w
ed

im
p
ro
ve
m
en

ts
an
d
tw

o
st
ab
ili
ze
d
;
o
n
ly
o
n
e
in

th
e
co
n
-

tr
o
l
gr
o
u
p
re
m
ai
n
ed

st
ab
le

H
u
an
g
et

al
.
[6
2]

20
co
n
tr
o
l

In
tr
ac
ra
n
ia
l

Pe
o
p
le
’s
R
ep

u
b
lic

o
f
C
h
in
a

42
Ef
fi
ca
cy

D
el
ay
ed

p
ro
gr
es
si
o
n
an
d
re
st
o
ra
ti
o
n

o
f
fu
n
ct
io
n

R
ep

o
rt

o
n
p
at
ie
n
ts

re
ce
iv
in
g
tw

o
to

fi
ve

tr
ea
tm

en
ts

(o
u
t
o
f
50
7

to
ta
l
p
at
ie
n
ts

re
ce
iv
in
g
ce
llu
la
r

th
er
ap
y)

C
h
en

et
al
.
[6
3]

En
d
o
ge
n
o
u
s
M
SC

m
o
b
ili
za
ti
o
n

n
/a

C
an
ad
a

8
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

Pi
lo
t
st
u
d
y;

G
-C
SF

tr
ea
tm

en
t

m
o
b
ili
ze
d
M
SC
s
w
it
h
n
o

ad
ve
rs
e
ef
fe
ct
s

C
as
h
m
an

et
al
.
[6
4]

n
/a

It
al
y

24
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

En
d
o
ge
n
o
u
s
M
SC

m
o
b
ili
ze
d
b
y

fo
u
r
G
-C
SF

st
im

u
la
ti
o
n
tr
ea
t-

m
en

ts
at

3-
m
o
n
th

in
te
rv
al
s;
A
t

1
ye
ar
,
n
o
in
cr
ea
se

in
d
is
ea
se

p
ro
gr
es
si
o
n
at

ra
te
s,
an
ti
-

in
fl
am

m
at
o
ry

re
sp
o
n
se

o
b
se
rv
ed

C
h
io

et
al
.
[6
5]

n
/a

Is
ra
el

17
G
-C
SF

Ef
fi
ca
cy

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le
;
n
o

si
gn
ifi
ca
n
t
ef
fe
ct

o
n
d
is
ea
se

p
ro
gr
es
si
o
n

En
d
o
ge
n
o
u
s
M
SC

m
o
b
ili
ze
d
b
y
G
-

C
SF

st
im

u
la
ti
o
n
ev
er
y
3
m
o
n
th
s

fo
r
1
ye
ar

N
ef
u
ss
y
et

al
.
[6
6]

18
Pl
ac
eb

o

A
u
to
lo
go
u
s
M
SC

In
tr
as
p
in
al

Tu
rk
ey

13
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

C
er
vi
ca
l
(C
1-
C
2)

in
je
ct
io
n
s;

en
ro
lle
d
p
at
ie
n
ts

h
ad

b
u
lb
ar

sy
m
p
to
m
s;
n
in
e
p
at
ie
n
ts

d
em

-
o
n
st
ra
te
d
el
ec
tr
o
n
eu

ro
m
yo
gr
a-

p
hy

im
p
ro
ve
m
en

ts
an
d
o
n
e
h
ad

st
ab
ili
ze
d
at

1
ye
ar

D
ed

a
et

al
.
[6
7]

In
tr
as
p
in
al

It
al
y

9
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

H
ig
h
th
o
ra
ci
c
(T
7-
T9
)
in
je
ct
io
n
s;

n
o
ap
p
ar
en

t
to
xi
ci
ty
,
tr
an
sp
la
n
t-

re
la
te
d
ad
ve
rs
e
ev
en

ts
,
o
r

st
ru
ct
u
ra
l
ch
an
ge
s;
ev
id
en

ce
o
f

sl
o
w
ed

fu
n
ct
io
n
al

d
ec
lin
e
in

fo
u
r
p
at
ie
n
ts
;
fo
llo
w
-u
p
o
f
4

an
d
u
p
to

9
ye
ar
s

M
az
zi
n
i
et

al
.
[6
8]

M
az
zi
n
i
et

al
.
[6
9]

In
tr
as
p
in
al

It
al
y

10
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

H
ig
h
th
o
ra
ci
c
(T
4-
T6
)
in
je
ct
io
n
s;

n
o
ap
p
ar
en

t
to
xi
ci
ty
,
tr
an
sp
la
n
t-

re
la
te
d
ad
ve
rs
e
ev
en

ts
,
o
r

st
ru
ct
u
ra
l
ch
an
ge
s;
fo
llo
w
-u
p
o
f

2
o
r
u
p
to

5
ye
ar
s

M
az
zi
n
i
et

al
.
[7
0]

M
az
zi
n
i
et

al
.
[6
9]

In
tr
as
p
in
al

Sp
ai
n

11
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

N
o
ac
ce
le
ra
ti
o
n
in

d
ec
lin
e
n
o
te
d
;

in
cr
ea
se
d
m
o
to
r
n
eu

ro
n
n
u
m
-

b
er
s
n
o
te
d
in

tr
ea
te
d
sp
in
al

co
rd

se
gm

en
ts

at
au
to
p
sy
;

m
o
to
r
n
eu

ro
n
s
su
rr
o
u
n
d
ed

b
y

C
D
90

1
ce
lls

w
it
h
o
u
t
d
eg
en

er
a-

ti
ve

u
b
iq
u
it
in

d
ep

o
si
ts

B
la
n
q
u
er

et
al
.
[7
1]

Lunn, Sakowski, Feldman 1103

www.StemCells.com VC AlphaMed Press 2014



Ta
b
le

1.
C
on

ti
nu

ed

St
em

ce
ll
ty
p
e

D
el
iv
er
y

m
et
h
o
d

C
o
u
n
tr
y

P
at
ie
n
ts

n
o
.

D
es
ir
ed

o
u
tc
o
m
es

C
o
n
cl
u
si
o
n
s

A
d
d
it
io
n
al

d
et
ai
ls

R
ef
er
en

ce
(s
)

In
tr
at
h
ec
al

In
d
ia

10
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le
;
in
it
ia
l

tr
en

d
to
w
ar
d
st
ab
ili
za
ti
o
n
o
f

d
is
ea
se

N
o
si
gn
ifi
ca
n
t
ac
ce
le
ra
ti
o
n
o
f

A
LS
FR
S
d
ec
lin
e
af
te
r
sh
o
rt
-t
er
m

fo
llo
w
-u
p
at

1
ye
ar
;
co
n
fi
rm

a-
ti
o
n
o
f
b
en

efi
t
re
q
u
ir
ed

w
it
h

lo
n
g-
te
rm

fo
llo
w
-u
p

Pr
ab
h
ak
ar

et
al
.
[7
2]

Ef
fi
ca
cy

In
tr
at
h
ec
al

o
r

co
m
b
in
ed

in
tr
at
h
ec
al
/

in
tr
av
en

o
u
s

Is
ra
el

10
in
tr
at
h
ec
al

Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

B
o
th

in
tr
at
h
ec
al

an
d
co
m
b
in
at
io
n

in
tr
at
h
ec
al
/

in
tr
av
en

o
u
s
ad
m
in
is
tr
at
io
n

ap
p
ro
ac
h
es

ar
e
sa
fe
;
SP
IO

la
b
el
-

in
g
in

a
su
b
se
t
o
f
p
at
ie
n
ts

re
ve
al
ed

ce
lls

in
m
en

in
ge
s,
su
b
-

ar
ac
h
n
o
id

sp
ac
e
an
d
sp
in
al

co
rd
;
im

m
u
n
o
m
o
d
u
la
to
ry

ef
fe
ct
s
o
b
se
rv
ed

;
fo
llo
w
-u
p

p
er
io
d
o
f
6–
25

m
o
n
th
s
w
it
h

M
R
I
at

1
ye
ar

Ka
ru
ss
is
et

al
.
[7
3]

9
co
m
b
in
ed

In
tr
av
en

tr
ic
u
la
r

So
u
th

Ko
re
a

1
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

O
m
m
ay
a
re
se
rv
o
ir
u
se
d
to

ad
m
in
-

is
te
r
th
re
e
in
je
ct
io
n
s
at

1
m
o
n
th

in
te
rv
al
s;
n
o
co
n
cl
u
si
o
n
s

o
n
ef
fi
ca
cy

d
u
e
to

ad
va
n
ce
d

d
is
ea
se

st
at
e
o
f
p
at
ie
n
t

B
ae
k
et

al
.
[7
4]

M
o
to
r
C
o
rt
ex

M
ex
ic
o

10
M
SC

Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

Pi
lo
t
st
u
d
y;

p
ro
ce
d
u
re

is
sa
fe

an
d

w
el
l-
to
le
ra
te
d
;
su
rv
iv
al

st
at
is
ti
-

ca
lly

h
ig
h
er

in
tr
ea
te
d
p
at
ie
n
ts

M
ar
ti
n
ez

et
al
.
[7
5]

10
co
n
tr
o
l

M
o
to
r
C
o
rt
ex

M
ex
ic
o

65
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

Ta
rg
et
ed

fr
o
n
ta
l
m
o
to
r
co
rt
ex

to
im

p
ro
ve

u
p
p
er

m
o
to
r
n
eu

ro
n

fu
n
ct
io
n
;
la
rg
er

co
n
tr
o
lle
d
tr
ia
l

re
q
u
ir
ed

to
as
se
ss

ef
fi
ca
cy

M
ar
ti
n
ez

et
al
.
[7
6]

T-
ce
ll
va
cc
in
at
io
n

co
u
p
le
d
w
it
h

au
to
lo
go
u
s

M
SC

an
d
N
PC

th
er
ap
y

In
tr
av
en

o
u
s

A
rg
en

ti
n
a

7
Ef
fi
ca
cy

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le
;

m
ed

ia
n
su
rv
iv
al

ex
te
n
d
ed

D
u
al

ce
llu
la
r
th
er
ap
y
ap
p
ro
ac
h
;

n
eu

ro
lo
gi
ca
l
re
co
ve
ry

n
o
te
d
in

fi
ve

p
at
ie
n
ts

M
o
vi
gl
ia

et
al
.
[7
7]

N
PC

In
tr
as
p
in
al

U
.S
.

12
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

Lu
m
b
ar

(L
2-
L4
)
in
je
ct
io
n
s;
fo
llo
w
-

u
p
o
f
6–
18

m
o
n
th
s;
n
o
ac
ce
le
r-

at
io
n
o
f
d
is
ea
se

co
u
rs
e
p
re
se
n
t;

o
n
e
p
at
ie
n
t
d
em

o
n
st
ra
te
d

im
p
ro
ve
m
en

ts
;
co
n
ti
n
u
ed

fo
llo
w
-u
p
al
so

av
ai
la
b
le

G
la
ss

et
al
.
[7
8]

R
ile
y
et

al
.
[7
9]

R
ile
y
et

al
.
[8
0]

In
tr
as
p
in
al

U
.S
.

6
Sa
fe
ty

A
p
p
ro
ac
h
is
sa
fe

an
d
fe
as
ib
le

C
er
vi
ca
l
(C
3-
C
5)

in
je
ct
io
n
s;
th
re
e

p
at
ie
n
ts

w
er
e
p
ar
t
o
f
th
e
in
it
ia
l

lu
m
b
ar

co
h
o
rt

(a
b
o
ve
)
an
d

re
ce
iv
ed

d
u
al

ta
rg
et
in
g
to

b
o
th

lu
m
b
ar

an
d
ce
rv
ic
al

re
gi
o
n
s

R
ile
y
et

al
.
[8
0]

A
b
b
re
vi
at
io
n
s:
A
LS
FR
S,
am

yo
tr
o
p
h
ic
la
te
ra
ls
cl
er
o
si
s
fu
n
ct
io
n
al
ra
ti
n
g
sc
al
e;
M
SC
,m

es
en

ch
ym

al
st
em

ce
ll;
N
PC

,n
eu

ra
lp
ro
ge
n
it
o
r
ce
ll;
O
ES
C
,o

lf
ac
to
ry

en
sh
ea
th
in
g
st
em

ce
ll;
SP
IO
,s
u
p
er

p
ar
am

ag
n
et
ic
ir
o
n

o
xi
d
e.

1104 Stem Cell Therapies for ALS

VC AlphaMed Press 2014 STEM CELLS



need for continued research, including additional preclinical
validation, detailed graft characterization, and long-term well-
designed trials, to support the safety and utility of OESC-
based therapies in ALS patients.

Clinical Applications of MSC-Based Therapies for ALS

The largest number of cellular therapy trials for ALS involves
MSCs. Three clinical trials have tested strategies using granu-
locyte colony-stimulating factor (GCSF) to mobilize endoge-
nous MSCs in ALS patients. Trials based in Canada and Italy
have demonstrated safety of the approach, confirmed mobili-
zation of MSCs, and demonstrated anti-inflammatory
responses in the spinal cord [64, 65]. A pilot study in Israel
also demonstrated safety and feasibility of GCSF-induced MSC
mobilization; however, no significant effects on disease pro-
gression were noted compared to placebo-treated controls
[66]. Alternatively, a number of trials assessing autologous
MSC treatment approaches around the world have demon-
strated the safety and feasibility of intraspinal, intrathecal,
and intracerebral MSC transplants [24]. Although safety was
the primary question in the majority of these studies, second-
ary outcome assessment in a trial of 13 patients in Turkey
receiving intraspinal C1-C2 MSC transplants demonstrated
encouraging effects on electoneuromyography measures in
the majority of patients [67], and secondary outcome evalua-
tion of 11 patients receiving intraspinal MSC transplants in
Spain revealed increased motor neuron numbers, reductions
in the presence of ubiquitin deposits in motor neurons, and
evidence of neurotrophism in treated spinal cord segments
[71]. In addition, a controlled pilot study in Mexico examining
the safety of intracranial MSC delivery in 20 ALS patients
reported that survival was significantly extended in treated
patients [75]. Together, these trials provide important insight
into the safety and feasibility of autologous MSC-based thera-
pies in ALS patients, although determining the efficacy of
these approaches requires continued insight into the ability of
MSCs to home to the CNS, insight into the mechanisms of
neuroprotection, and large, controlled studies to evaluate
efficacy.

Clinical Application of NPC-Based Therapies

Given the vast amount of preclinical support for NPC-based
therapies, an FDA-approved clinical trial assessing the safety
and feasibility of intraspinal injection of human spinal stem
cells (HSSCs) in ALS patients is currently in progress in the
U.S. [22, 23, 78, 79]. Using a customized injection device
designed for safe, reproducible, accurate delivery of biologics
to the spinal cord [22, 78, 79, 86–89], 18 intraspinal trans-
plantation surgeries were performed following a risk escala-
tion paradigm to complete phase I of the trial. Twelve
patients received L2-L5 lumbar-targeted intraspinal injections
and six patients received C3-C5 cervical-targeted intraspinal
injections with no major adverse effects attributed to the sur-
gery or cells [78–80]. Of note, the last three patients receiving
cervical HSSC transplants had previously received lumbar
transplants, demonstrating that targeting multiple levels of
the spinal cord is feasible in ALS patients, an approach associ-
ated with improved therapeutic efficacy in preclinical studies
[53]. Patients were all evaluated for multiple functional meas-
ures, including ALSFRS, respiratory function, and muscle
strength, and demonstrated no acceleration in progression fol-

lowing transplants, and one patient exhibited improved func-
tional measures; however, phase II of the trial, which began
in September 2013, will be required to assess HSSC dosing
and efficacy of the intervention.

THE FUTURE OF STEM CELL THERAPIES FOR ALS

Overall, multiple groups have assessed the safety of cellular
grafting along the entire neural axis, using systemic
approaches and targeting brain regions as well as the upper
and lower spinal cord, and demonstrated that delivery
approaches and the introduction of stem cell populations into
these regions can be successfully and safely accomplished.
While considerable work is still required, these data provide
proof-of-concept that cellular grafting as a therapy for ALS is
feasible and support a continued focus on refining stem cell-
based therapeutic approaches to achieve maximal benefit in
ALS.

As we look to the future, a number of important consider-
ations must still be addressed to support stem cell therapies
for the treatment of ALS. First, elucidating the proper
approach to deliver or target cellular therapies to regions
where it will have maximal benefit in ALS patients is of
utmost importance. As detailed in the previous section, strat-
egies ranging from intravenous, intraspinal, and intraventricu-
lar injection of cellular therapies to treatments designed to
activate or mobilize endogenous progenitor populations are
currently being pursued. While there may not be a single
ideal approach, establishing standardized practices for the
delivery of cellular therapies to ensure reproducible injection
volumes and targeting accuracy will assist in the design and
interpretation of future clinical trials. For example, the recent
development and utilization in a clinical trial of novel devices
for intraspinal delivery of cellular therapies is already realizing
these objectives [22, 78, 79, 86–89].

Second, confirmation of graft survival is imperative to
achieve sustained efficacy. In many preclinical in vivo studies,
the identification of grafted human cells in animal models is
facilitated by immunohistochemical identification using
human-specific markers [50, 52, 86]. Upon clinical translation,
however, more sophisticated techniques to identify and follow
the fate of grafted cells will be required. For instance, the
labeling of cells with superparamagnetic iron oxide nanopar-
ticles or reporter genes allows cell graft tracking using
advanced imaging technologies [28, 57, 90–95]. Notably, these
approaches can provide insight into the migratory potential of
grafted cells following systemic or targeted injections, as dem-
onstrated in both a large animal and human trials [73, 86].
Understanding how grafted cells migrate into or within the
spinal cord will be necessary to optimize delivery approaches
and maximally impact critical cellular populations, including
both upper and lower motor neurons, and maintain functional
neurocircuitry along the entire corticospinal tract.

Third, requirements for immunosuppression must also be
determined. Graft survival of transplanted human NPCs is
enhanced using combined immunosuppression regimens in
ALS models and in a large mammal, the Gottingen minipig
[86, 96]. What is now required are data from human trials to
determine the role of the immune system and immunosup-
pression requirements when transplanting human cells into
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ALS patients. Additional longitudinal data from ongoing and
future clinical trials will provide important insight into graft
survival, characterization, and treatment efficacy.

As we continue to move forward and optimize how to best
deliver cellular therapies, emphasis on the design of future clin-
ical trials will also be necessary to glean meaningful insight into
the safety and efficacy of clinical outcomes [97, 98]. Common
outcome measures in these ALS trials include ALSFRS assess-
ment and other functional measures as well as survival; how-
ever, the elucidation and inclusion of novel prognostic
biomarkers in ALS trials may provide additional power and
inform patient selection criteria [97, 98]. Given the heterogene-
ous presentation and rapid progression of ALS, consideration of
limb versus bulbar onset ALS and early versus late disease, and
knowledge of disease progression rates prior to cellular deliv-
ery, may be required patient selection criteria in future trials.

Finally, novel cellular therapy development may be possi-
ble with continued advances in the field of stem cell research.
Since the initial reports generating induced pluripotent stem
(iPS) cells from somatic tissue, established differentiation pro-
tocols have enabled the development of patient-specific iPS-
derived motor neurons from ALS patients for in vitro charac-
terization and drug screening [99–102]. These cells may also
offer an autologous source for cellular therapy that circum-
vents the need for immunosuppression; however, the clinical
application of iPS cellular therapies has not yet been
attempted or realized, and insight into how the inherent pre-
disposition to disease these cells may possess affects their
therapeutic potential is required. Nonetheless, constant proto-
col refinements, such as alternative methods to introduce
genetic reprogramming factors and the most recent reports of
iPS cell generation using a chemical-based approach, are sup-
porting the potential for future preclinical and clinical thera-
peutic applications of this technology [103–107]. Continued
development of enhanced stem cell lines, such as those
expressing increased levels of neurotrophic growth factors,
may also gain ground in future translational studies, as this
approach has the potential to combine the benefits of growth
factor delivery in ALS with cellular support offered by stem
cell-based therapies and form a multifaceted attack on ALS
[108, 109]. In addition, cellular therapy approaches combining
NPC, glial progenitor cell, and/or skeletal muscle cell treat-
ment modalities may offer additive benefit against pathoge-
nenic mechanisms conferred at the level of neurons, glia, and
in muscle at peripheral neuromuscular junctions. Indications
for the future combination of immune modulation with stem
cell therapies as a possible therapeutic avenue also exist, as
an Argentinian clinical trial combining MSC or NPC transplan-

tation with T-cell vaccination demonstrated safety, improve-
ments in median survival, and evidence of neurological
recovery in five out of seven patients [77]. Overall, ensuring
that cellular therapies are capable of providing long-term ben-
efits that affect motor neurons, their environment, and con-
nectivity along the entire neuroaxis is likely critical to achieve
meaningful outcomes in ALS.

CONCLUSIONS

Although much work remains to be done, the increasing focus
on preclinical research for stem cell therapies and the recent
translation of a small number of these therapies to clinical tri-
als have set the stage for continued progress. In the near
future, efforts must continue to determine the most effica-
cious cell type and identify appropriate approaches to safely
administer cellular therapies to achieve positive outcomes in
ALS. With the establishment of best practice guidelines for
cellular therapies, it may then be possible for future endeav-
ors to address strategies that use novel cellular sources, engi-
neer enhanced stem cells, or develop combinatorial
therapeutic approaches in order to provide potentially mean-
ingful therapies for this lethal disorder.
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